Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation.

نویسندگان

  • Regina Neubauer
  • Andrea Neubauer
  • Gerald Wölkart
  • Christine Schwarzenegger
  • Barbara Lang
  • Kurt Schmidt
  • Michael Russwurm
  • Doris Koesling
  • Antonius C F Gorren
  • Astrid Schrammel
  • Bernd Mayer
چکیده

Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactivation of nitroglycerin by the East Asian variant of aldehyde dehydrogenase-2

Background The East Asian variant of mitochondrial aldehyde dehydrogenase (ALDH2) exhibits significantly reduced dehydrogenase, esterase and nitroglycerin (GTN) reductase activities [1]. The small molecule Alda-1 was reported to partly restore low acetaldehyde dehydrogenase activity of this variant [2]. In the present study we compared the wild-type enzyme (ALDH2*1) with the East Asian variant ...

متن کامل

Aldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans.

OBJECTIVE Nitrates are used widely in clinical practice. However, the mechanism underlying the bioactivation of nitrates to release NO remains unclear. Recent animal data suggest that mitochondrial aldehyde dehydrogenase (ALDH2) plays a central role in nitrate bioactivation, but its role in humans is not known. We investigated the role of ALDH2 in the vascular effects of nitroglycerin (NTG) in ...

متن کامل

Role of the general base Glu268 in nitroglycerin bioactivation and mechanism-based superoxide formation by aldehyde dehydrogenase-2

Background Mitochondrial aldehyde dehydrogenase (ALDH2) plays an essential role in nitroglycerin (GTN) bioactivation, resulting in formation of nitric oxide (NO) or a related activator of soluble guanylate cyclase (sGC) and consequently in cGMP-mediated vasorelaxation [1]. ALDH2 denitrates GTN to 1,2-glyceryl dinitrate (1,2-GDN) and nitrite but also catalyzes reduction of GTN to nitric oxide (N...

متن کامل

Vascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2.

RATIONALE According to general view, aldehyde dehydrogenase-2 (ALDH2) catalyzes the high-affinity pathway of vascular nitroglycerin (GTN) bioactivation in smooth muscle mitochondria. Despite having wide implications to GTN pharmacology and raising many questions that are still unresolved, mitochondrial bioactivation of GTN in blood vessels is still lacking experimental support. OBJECTIVE In t...

متن کامل

Bioactivation of pentaerythrityl tetranitrate by mitochondrial aldehyde dehydrogenase

Mitochondrial aldehyde dehydrogenase (ALDH2) contributes to vascular bioactivation of the antianginal drugs nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN), resulting in cGMP-mediated vasodilation. Although continuous treatment with GTN results in the loss of efficacy that is presumably caused by inactivation of ALDH2, PETN does not induce vascular tolerance. To clarify the mechanis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 84 3  شماره 

صفحات  -

تاریخ انتشار 2013